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ABSTRACT 
The paper presents novel recursive algorithms for realization of one-dimensional type-II discrete cosine 

transform (DCT) and inverse discrete cosine transform (IDCT) of any length. By using some   mathematical 

techniques, recursive expressions for DCT and IDCT have been developed. The number of additions and 

multiplications in the recursive algorithm for DCT are less in comparison with some other DCT algorithms. 

Basing on these two recursive algorithms, two systolic architectures are presented for realization of DCT and 

IDCT. The recursive algorithms are appropriate for VLSI implementation. 

Keywords-Discrete cosine transform, Inverse discrete cosine transform, Recursive algorithm, Systolic 

architecture. 

 
I. INTRODUCTION 

Discrete transforms play a significant 
role in digital signal processing. Discrete cosine 
transform (DCT) is used as key function in 
many signal and image processing applications. 
There are four types of DCT. Of these, the DCT-
II and DCT-IV have gained popularity.  
 
The original definition of the DCT introduced 
by Ahmed et al. in 1974 [1] was one-dimensional 
(1-D) and suitable for 1-D digital signal 
processing. The DCT has found wide 
applications in speech and image processing as 
well as telecommunication signal processing for 
the purpose of data compression, feature 
extraction, image reconstruction, and filtering. 
Thus, many algorithms and VLSI architectures 
for the fast computation of DCT have been 
proposed [2]-[7]. Among those algorithms [6] 
and [7] are believed to be most efficient two-
dimensional DCT algorithms in the sense of 
minimizing any measure of computational 
complexity. 
 
In this paper, two algorithms to convert 1-D 
type-II DCT and IDCT of any size into recursive 
forms are presented. These algorithms are 
implemented by recursive filter structures. Two 
systolic architectures for realization of DCT and 
IDCT of arbitrary length are presented in this 
paper. The proposed approach requires N 

multiplications and (3N-4) additions for 
realization of N length DCT. The number of 
multiplications and additions in the proposed 
algorithm for DCT are less in comparison with 
some existing structures. The IDCT requires N 
multiplications and (2N – 3) additions for its 
realization.  
 
The systolic architecture has the following 
characteristics: 

 A massive and non-centralized parallelism 

 Local communications 

 Synchronous evaluation     
 
Systolic architectures are established as the most 
popular and dominant class of VLSI structures 
due to the simplicity of their processing 
elements (PEs), modularity of their structure, 
regular and nearest neighbour interconnections 
between the PEs, High level of pipelinability, 
small chip area and lower dissipation .In the 
systolic architectures, the desired data are 
pumped rhythmically in regular intervals across 
the PEs for yielding high throughput by fully 
pipelined processing. The systolic array concept 
can also be exploited at bit level in the design of 
individual VLSI chips. The highly regular 
structure of systolic circuits renders them 
comparatively easy to design and test. The 
systolic arrays are used in the design and 
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implementation of high performance digital 
signal processing equipment.  
 
The rest of the paper is organized as follows: 
The derivation of recursive algorithm for 1-D 
DCT-II is presented in Section-II. An example 
for realization of DCT is given in Section-III. The 
comparison of proposed realization of DCT 
with other research works is presented in 
Section-IV. The systolic architecture for 
computation DCT is presented in Section-V. The 
recursive algorithm for IDCT is given in Section-
VI. An example for realization IDCT is 
presented in Section-VII. The systolic 
architecture for realization of IDCT is presented 
in Section-VIII. The conclusion is given in 
Section-IX. 
 

II.  PROPOSED RECURSIVE 

ALGORITHM FOR DCT-II 
The type-II DCT of input sequence

 ( ) : 0,1,..., 1x n n N   is defined as 
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The Y values represent the output data. Without 

loss of generality, the scale factor 
2

( )k
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  can 

be omitted in rest of the paper. 
 
Replacing n by (N - n) in (1), we obtain 
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Using (4), (3) can be expressed as 
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for k = 0,1,2,.., N -1 
 
From (4), we get 
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It is easy to show the following trigonometric 
identity. 
                

      

  k

kkk

r

rr





2cos

cos1cos2cos




  (8) 

 
Using (8) in the numerator of RHS of (6), we 
have 
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Using (4) and (7) in (9), we obtain the following 
recursive relation. 
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T = 1 from (4), (11) can be expressed as 
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Using the recursive formula (10) in (12), we 
obtain 
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Form (11), we get 
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Using (14) and (15) in (13), we obtain the 
following recursive relation. 
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Substituting (11) in (5), we get  
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for k = 0,1,2,…,N-1  
 
The DCT-II in (17) can be realized using the 
recursive formula (16). 
 

III.  EXAMPLE FOR REALIZING DCT-

II 
A 5-point DCT-II with input sequence 

 ( ) : 0,1,2,3,4x n n   is taken to clarify the 

proposal. For N =5, (17) can be written as 
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for k = 0,1,2,3,4. 
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The DCT-II given in (17) can be realized using 
the recursive formula (16) by the recursive filter 

structure, shown in Fig. 1. 
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Fig. 1: Recursive filter structure for computing DCT-11 
 

IV.  COMPARISON OF DCT-II WITH 

RELATED WORKS 
The proposed approach requires N 

multiplications and (3N-4) additions for the 
realization of N length DCT-II. In Tables 1 and 
2, the number of multipliers and the number of 
adders in the proposed algorithm are compared 
with the corresponding parameters based on the 
other methods. Table 3 gives the comparison of 
the computation complexities of the proposed 
algorithm with other algorithms found in the 
related research works.  
 
Table 1: Comparison of the number of 
multipliers required by different algorithms 
N [8] [4] [11] [5,13] [14] [12] Proposed 

4 6 5 5 4 11 4 4 

8 16 17 13 12 19 13 8 

16 44 49 33 32 36 35 16 

32 116 129 81 80 68 87 32 

64 292 321 193 192 132 207 64 

 
Table 2: Comparison of the number of adders 
required by different algorithms 
N [11] [4] [5,13] [8] [14] [12] Proposed 

4 9 9 9 8 11 12 8 

8 35 41 29 26 26 38 20 

16 95 129 81 74 58 102 44 

32 251 353 209 194 122 254 92 

64 615 897 513 482 250 606 188 

 
Table 3: Computation complexities 

 of multiplications of additions 

Proposed 
algorithm 

N 3N-4 

F[5,9,10,13] (1/2) N log2N (3/2) N log2N - N + 1 

[4,15,16] N log2N /2 + 1 3 N log2 N / 2 -N +1 

[12] (1/2) N log2N + (1/4) N-1 (3/2) N log2N + (1/2) N-2 

[14] 2(N+3)(N-1) / N 2(2N-1)(N-1) / N 

 

V.  SYSTOLIC ARCHITECTURE FOR 

DCT-II 
The structure of the proposed linear 

systolic array for computation of N-point DCT-
II is shown in Fig. 2. The DCT is implemented 
by this systolic architecture as per the recursive 
equations (19) given for N=5.  It consists of 
(N+1) locally connected processing elements 
(PEs) of which the first N PEs are identical. The 
recurrence relation given by (16) is implemented 
in the first N PEs, while the last PE computes 
the DCT components given by (17). The 
function of a subtractor cell is shown in Fig.3.  
The function of each of the first N PEs is shown 
in Fig. 4 and that of the last PE is shown in Fig. 
5.  One sample of the input data is fed to each 
PE through a subtractor cell one time-step 
staggered with respect to the input of previous 

PE.  The black solid circle, “” represents  one-
cycle delay element. The input to the ith PE of 
the first N PEs is [x(i-1) - x(i - 2)] due to the delay 
element between its sutractor cell and the data 
sample fed to the previous PE.  The first output 
is obtained after (N+1) time steps and the rest (N 
– 1) output are obtained in the subsequent (N – 
1) time steps. Each PE of the linear array 
consists of one multiplier and two adders, while 
the last (N + 1)th PE contains one multiplier. 
The duration of the cycle period is T = TM + 3TA, 
where TM and TA are, respectively, the times 
involved in performing one multiplication and 
one addition. This architecture requires N 
multiplications and (3N – 4) additions for 
realization of N-point DCT.   
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Fig. 2: The linear systolic architecture for N-point DCT-II 

 

 
 
 
 
 
 
Fig.3: Subtractor cell of the linear systolic 
architecture for DCT-II 
 
 

 

 

inout

ininininout

inout

qr

rqpXq

pp







 

Fig.4: Function of each of the first N PEs of 
systolic architecture for DCT-II 
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Fig.5: Function of N+1th PE of the linear 
systolic architecture for DCT-II 
 

VI.  PROPOSED RECURSIVE 

ALGORITHM FOR IDCT 
 
The IDCT of a sequence 
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for 0,1,2,..., 1n N   
 
From (23), we have 
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Using (25) and (26) in (28), we obtain the 
following recursive formula. 
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Substituting (34) and (35) in (33), the following 
recursive relation is obtained. 
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for n = 0,1,2,…..,N-1 
 
The IDCT in (37) can be computed using the 
recursive relation (36). This algorithm requires 
(2N-3) additions and N multiplications for 
realization of IDCT. 
 

VII. EXAMPLE FOR REALIZING IDCT 
Let us consider a 5-point IDCT with output 

sequence  ( ) : 0,1,2,3,4Y k k  to clarify the 

proposal. For N =5, (37) can be written as 
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As 
0

0
n

Q   and
1

0
n

Q

 , we get the following 

recursive relations from (36) 
                                                           

1
(0)

n
YQ   

2

3 2

4 3 2

5 4 3

(1) 2cos( ) (0)

(2) 2cos( ) (0)

(3) 2cos( )

(4) 2cos( )

n

n

n n

n

n n n

n

n n n

n

Y YQ

Y YQ Q

YQ Q Q

YQ Q Q









 

  

  

  

     (39)                                     

 
The IDCT given in (37) can be computed using 
the recursive relation (36) by the recursive filter 
structure, shown in Fig. 6. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6: Recursive filter structure for computing IDCT-11 
 

VIII.   SYSTOLIC ARCHITECTURE FOR 

IDCT-II 
The structure of the proposed linear 

systolic architecture for computation of N-point 
IDCT is shown in Fig. 7. The IDCT is realized by 
this systolic architecture as per the recursive 
equations (39) given for N = 5.  It consists of (N + 
1) locally connected PEs of which the first N PEs 
are identical. The recurrence relation given by 
(36) is implemented in the first N PEs, while the 
last PE computes the IDCT components given 
by (37). The function of each of the first N PEs is 
shown in Fig. 4 and that of the last PE is shown 
in Fig. 8. The output data is fed to each PE one 
time-step staggered with respect to the input of 

previous PE. The input to the ith PE of the first 
N PEs is Y(i-1).  The first input data is obtained 
after (N+1) time steps and the rest (N – 1) input 
data are obtained in the subsequent (N – 1) time 
steps. Each PE of the linear array consists of one 
multiplier and two adders, while the last (N + 
1)th PE contains one multiplier. The duration of 
the cycle period is T = TM + 2TA, where TM and 
TA are, respectively, the times involved in 
performing one multiplication and one 
addition. The average computation time is (N + 
1)T. This architecture requires N multiplications 
and (2N – 3) additions for realization of N-point 
IDCT. 
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  n
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Fig.7: The linear systolic architecture for N-point IDCT 
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Fig.8: Function of (N+1)th PE of the linear systolic architecture for IDCT 

 
 

IX.  CONCLUSION 

In this paper, two novel recursive 

algorithms for realizing one-dimensional type-II 

DCT and IDCT of any length have been derived. 

These algorithms are implemented by recursive filter 

structures. Also two linear systolic architecture for 

realizing  DCT and IDCT are  presented in this 

paper. The number of additions and multiplications 

in the recursive algorithm for DCT are less in 

comparison with some existing structures. Therefore, 

saving in time can be achieved by the proposed 

algorithm for DCT in its realization. The recursive 

structures require less memory and are suitable for 

parallel VLSI implementation. The systolic arrays 

are used in the design and implementation of high 

performance digital signal processing equipment. 

The highly regular structure of systolic circuits 

renders them comparatively easy to design and test. 
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